Large Non-Gaussianity in Axion Inflation

Marco Peloso, University of Minnesota

Neil Barnaby, M.P., PRL 106, 181301 (2011)
Neil Barnaby, Ryo Namba, M.P., JCAP 009, 1104, (2011)

Large Non-Gaussianity in Axion Inflation

Marco Peloso, University of Minnesota

Neil Barnaby, M.P., PRL 106, 181301 (2011)
Neil Barnaby, Ryo Namba, M.P., JCAP 009, 1104, (2011)

- Effect of $\frac{\alpha}{f} \phi F \tilde{F}$ on primordial perturbations

Large Non-Gaussianity in Axion Inflation

Marco Peloso, University of Minnesota

Neil Barnaby, M.P., PRL 106, 181301 (2011)
Neil Barnaby, Ryo Namba, M.P., JCAP 009, 1104, (2011)

- Effect of $\frac{\alpha}{f} \phi F \tilde{F}$ on primordial perturbations
- $f \sim 10^{-2} \alpha M_{p} \rightarrow$ detectable non-gaussianity of characteristic (\sim equilateral) shape
- Virtue of inflation: simplest models (single, standard kinetic term, slowly rolling field) work! Unobservable primordial non-gaussianity.
- Non-gaussianity \leftrightarrow inflaton interactions. ϕ not free: (i) gravity; (ii) reheating; make sure compatible with the flatness of $V(\phi)$
- Virtue of inflation: simplest models (single, standard kinetic term, slowly rolling field) work! Unobservable primordial non-gaussianity.
- Non-gaussianity \leftrightarrow inflaton interactions. ϕ not free: (i) gravity; (ii) reheating; make sure compatible with the flatness of $V(\phi)$

By itself, flatness stringent requirement:
For example $\Delta V=\frac{\lambda}{4} \phi^{4}, \lambda \simeq 10^{-13}$. Or, for example, even higher dim.
Planck - suppressed operators can spoil inflaton $V=\mathrm{e}^{\frac{\phi^{2}}{M_{p}^{2}}}\left(D W^{2}-\frac{3 W^{2}}{M_{p}^{2}}\right)$

- Virtue of inflation: simplest models (single, standard kinetic term, slowly rolling field) work! Unobservable primordial non-gaussianity.
- Non-gaussianity \leftrightarrow inflaton interactions. ϕ not free: (i) gravity; (ii) reheating; make sure compatible with the flatness of $V(\phi)$

By itself, flatness stringent requirement:
For example $\Delta V=\frac{\lambda}{4} \phi^{4}, \lambda \simeq 10^{-13}$. Or, for example, even higher dim.
Planck - suppressed operators can spoil inflaton $V=\mathrm{e}^{\frac{\phi^{2}}{M_{p}^{2}}}\left(D W^{2}-\frac{3 W^{2}}{M_{p}^{2}}\right)$

- Here, single field slow roll inflation, for which coupling to "matter" provides large non-gaussianity, while $V(\phi)$ controllably flat.

QCD axion \rightarrow Inflaton axion

QCD instantons $\rightarrow\left\{\begin{array}{l}\Delta \mathcal{L}=\frac{-g^{2}}{11 \pi^{2}} \theta F \tilde{F} \\ V=\wedge^{4}[1-\cos \theta]\end{array}\right.$
Limit neutron electric dipole moment $\Rightarrow \theta \lesssim 10^{-10}$

QCD axion \rightarrow Inflaton axion

QCD instantons $\rightarrow\left\{\begin{array}{l}\Delta \mathcal{L}=\frac{-g^{2}}{11 \pi^{2}} \theta F \tilde{F} \\ V=\Lambda^{4}[1-\cos \theta]\end{array}\right.$
Limit neutron electric dipole moment $\Rightarrow \theta \lesssim 10^{-10}$

Peccei, Quinn '77: Chiral U(1) symmetry spontaneously broken $\Phi=(f+\rho) \mathrm{e}^{i \phi / f}$

Symmetry is anomalous $\Rightarrow \theta \rightarrow \theta+\frac{\phi}{f}$

QCD axion \rightarrow Inflaton axion

QCD instantons $\rightarrow\left\{\begin{array}{l}\Delta \mathcal{L}=\frac{-g^{2}}{1 \pi^{2}} \theta F \tilde{F} \\ V=\Lambda^{4}[1-\cos \theta]\end{array}\right.$
Limit neutron electric dipole moment $\Rightarrow \theta \lesssim 10^{-10}$

Peccei, Quinn '77: Chiral U(1) symmetry
spontaneously broken $\Phi=(f+\rho) \mathrm{e}^{i \phi / f}$
Symmetry is anomalous $\Rightarrow \theta \rightarrow \theta+\frac{\phi}{f}$

- Smallness of \wedge is technically natural. No perturbative sphfft
- UV completion (ρ) relevant only at scales $>f$
- ϕ only derivatively coupled

Natural Inflation: Freese, Frieman, Olinto '90

Savage, Freese, Kinney '06

Natural Inflation: Freese, Frieman, Olinto '90

Problems with $f>M_{p}$

Savage, Freese, Kinney '06

- $U(1)_{\mathrm{PQ}}$ broken above QG scale
- Hard in weakly coupled string theory

Kallosh, Linde, Linde, Susskind '95
Banks, Dine, Fox, Gorbatov '03

Two axions \& gauge groups Kim, Nilles, MP '04

$$
\begin{gathered}
V=\Lambda_{1}^{4}\left[1-\cos \left(\frac{\theta}{f_{1}}+\frac{\rho}{g_{1}}\right)\right]+\Lambda_{2}^{4}\left[1-\cos \left(\frac{\theta}{f_{2}}+\frac{\rho}{g_{2}}\right)\right] \\
f_{\mathrm{eff}} \gg f, g \text { if } f_{1} / g_{1} \simeq f_{2} / g_{2}
\end{gathered}
$$

Two axions \& gauge groups Kim, Nilles, MP '04

$$
\begin{gathered}
V=\Lambda_{1}^{4}\left[1-\cos \left(\frac{\theta}{f_{1}}+\frac{\rho}{g_{1}}\right)\right]+\Lambda_{2}^{4}\left[1-\cos \left(\frac{\theta}{f_{2}}+\frac{\rho}{g_{2}}\right)\right] \\
f_{\mathrm{eff}} \gg f, g \text { if } f_{1} / g_{1} \simeq f_{2} / g_{2}
\end{gathered}
$$

N-flation Dimopoulos et al '05
Collectively drive inflation, $f_{\text {eff }}=\sqrt{N} f$

Two axions \& gauge groups
$V=\Lambda_{1}^{4}\left[1-\cos \left(\frac{\theta}{f_{1}}+\frac{\rho}{g_{1}}\right)\right]+\Lambda_{2}^{4}\left[1-\cos \left(\frac{\theta}{f_{2}}+\frac{\rho}{g_{2}}\right)\right]$

$$
f_{\text {eff }} \gg f, g \text { if } f_{1} / g_{1} \simeq f_{2} / g_{2}
$$

N-flation Dimopoulos et al '05
Collectively drive inflation, $f_{\text {eff }}=\sqrt{N} f$

Axion monodromy
$\Delta V \propto \phi$ from brane wrapping

McAllister, Silverstein, Westphal '08
Flauger et al '09

Two axions \& gauge groups
$V=\Lambda_{1}^{4}\left[1-\cos \left(\frac{\theta}{f_{1}}+\frac{\rho}{g_{1}}\right)\right]+\Lambda_{2}^{4}\left[1-\cos \left(\frac{\theta}{f_{2}}+\frac{\rho}{g_{2}}\right)\right]$

$$
f_{\text {eff }} \gg f, g \text { if } f_{1} / g_{1} \simeq f_{2} / g_{2}
$$

N-flation Dimopoulos et al '05
Collectively drive inflation, $f_{\text {eff }}=\sqrt{N} f$

Axion monodromy
$\Delta V \propto \phi$ from brane wrapping

McAllister, Silverstein, Westphal '08
Flauger et al '09

Dante's inferno Berg, Pajer, Sjors '09

Two axions \& gauge groups
$V=\Lambda_{1}^{4}\left[1-\cos \left(\frac{\theta}{f_{1}}+\frac{\rho}{g_{1}}\right)\right]+\Lambda_{2}^{4}\left[1-\cos \left(\frac{\theta}{f_{2}}+\frac{\rho}{g_{2}}\right)\right]$

$$
f_{\text {eff }} \gg f, g \text { if } f_{1} / g_{1} \simeq f_{2} / g_{2}
$$

N-flation Dimopoulos et al '05
Collectively drive inflation, $f_{\text {eff }}=\sqrt{N} f$

Axion monodromy
$\Delta V \propto \phi$ from brane wrapping

McAllister, Silverstein, Westphal '08
Flauger et al '09

Dante's inferno Berg, Pajer, Sjors '09
Axion-4form mixing Kaloper, Sorbo '08

Two axions \& gauge groups
$V=\Lambda_{1}^{4}\left[1-\cos \left(\frac{\theta}{f_{1}}+\frac{\rho}{g_{1}}\right)\right]+\Lambda_{2}^{4}\left[1-\cos \left(\frac{\theta}{f_{2}}+\frac{\rho}{g_{2}}\right)\right]$

$$
f_{\text {eff }} \gg f, g \text { if } f_{1} / g_{1} \simeq f_{2} / g_{2}
$$

N-flation Dimopoulos et al '05
Collectively drive inflation, $f_{\text {eff }}=\sqrt{N} f$

Axion monodromy
$\Delta V \propto \phi$ from brane wrapping

McAllister, Silverstein, Westphal '08
Flauger et al '09

Dante's inferno Berg, Pajer, Sjors '09
Axion-4form mixing Kaloper, Sorbo '08
Controllable realizations of Iarge field inflation $\left(V \propto \phi, \phi^{2}\right)$, with $f \ll M_{p}$

$$
\mathcal{L} \supset-\frac{\alpha}{f} \phi F \tilde{F}
$$

- Dictated by shift-symmetry and parity
- Generally present, not "extra ingredient"

$$
\mathcal{L} \supset-\frac{\alpha}{f} \phi F \tilde{F}
$$

- Dictated by shift-symmetry and parity
- Generally present, not "extra ingredient"

(1) $\varphi^{(0)} \rightarrow A+A, \quad$ non-perturbative depletion $\propto \dot{\varphi}^{(0)}$ \Longrightarrow Exponential growth of A

$$
\mathcal{L} \supset-\frac{\alpha}{f} \phi F \tilde{F}
$$

- Dictated by shift-symmetry and parity

- Generally present, not "extra ingredient"
(1) $\varphi^{(0)} \rightarrow A+A, \quad$ non-perturbative depletion $\propto \dot{\varphi}^{(0)}$ \Longrightarrow Exponential growth of A
(2) $A+A \rightarrow \delta \varphi$, inverse decay

\Longrightarrow Significant contribution to $\delta \varphi$!

$$
\mathcal{L} \supset-\frac{\alpha}{f} \phi F \tilde{F}
$$

- Dictated by shift-symmetry and parity
- Generally present, not "extra ingredient"

(1) $\varphi^{(0)} \rightarrow A+A, \quad$ non-perturbative depletion $\propto \dot{\varphi}^{(0)}$ \Longrightarrow Exponential growth of A
(2) $A+A \rightarrow \delta \varphi$, inverse decay

\Longrightarrow Significant contribution to $\delta \varphi$!
(3) $\delta \varphi \rightarrow A+A$, perturbative decay

\Longrightarrow Important only AFTER inflation (reheating)

$$
\mathcal{L} \supset-\frac{1}{4} F^{2}-\frac{\alpha}{f} \phi^{(0)} F \tilde{F} \quad \boldsymbol{\nearrow}_{ \pm}^{\prime \prime}+\left[k^{2} \mp k \frac{\alpha}{f} \phi^{(0)^{\prime}}\right] A_{ \pm}=0
$$

$$
\mathcal{L} \supset-\frac{1}{4} F^{2}-\frac{\alpha}{f} \phi^{(0)} F \tilde{F} \quad \boldsymbol{\nearrow}_{\text {helicity }}^{A_{ \pm}^{\prime \prime}}+\left[k^{2} \mp k \frac{\alpha}{f} \phi^{(0)^{\prime}}\right] A_{ \pm}=0
$$

$$
\mathcal{L} \supset-\frac{1}{4} F^{2}-\frac{\alpha}{f} \phi^{(0)} F \tilde{F} \quad \boldsymbol{\nearrow}_{\text {helicity }}^{A_{ \pm}^{\prime \prime}}+\left[k^{2} \mp k \frac{\alpha}{f} \phi^{(0)^{\prime}}\right] A_{ \pm}=0
$$

$$
\mathcal{L} \supset-\frac{1}{4} F^{2}-\frac{\alpha}{f} \phi^{(0)} F \tilde{F} \quad \boldsymbol{\nearrow}_{\text {helicity }}^{A_{ \pm}^{\prime \prime}}+\left[k^{2} \mp k \frac{\alpha}{f} \phi^{(0)^{\prime}}\right]_{ \pm}=0
$$

$$
\mathcal{L} \supset-\frac{1}{4} F^{2}-\frac{\alpha}{f} \phi^{(0)} F \tilde{F} \quad \boldsymbol{\nearrow}_{\text {helicity }}^{A_{ \pm}^{\prime \prime}}+\left[k^{2} \mp k \frac{\alpha}{f} \phi^{(0)^{\prime}}\right]_{ \pm}=0
$$

$$
\mathcal{L} \supset-\frac{1}{4} F^{2}-\frac{\alpha}{f} \phi^{(0)} F \tilde{F} \quad \boldsymbol{\nearrow}_{\text {helicity }}^{A_{ \pm}^{\prime \prime}}+\left[k^{2} \mp k \frac{\alpha}{f} \phi^{(0)^{\prime}}\right] A_{ \pm}=0
$$

Physical effects only from modes A_{+}at horizon exit

- A production from ϕ kinetic energy. Resulting friction can be so strong as to facilitate ϕ slow roll. Anber, Sorbo '09
- We impose negligible backreaction of A on background dynamics
- A production from ϕ kinetic energy. Resulting friction can be so strong as to facilitate ϕ slow roll. Anber, Sorbo '09
- We impose negligible backreaction of A on background dynamics

$$
\delta \ddot{\phi}+3 H \delta \dot{\phi}-\frac{\vec{\nabla}^{2}}{a^{2}} \delta \phi+m^{2} \delta \phi=\frac{\alpha}{f} F^{\mu \nu} \tilde{F}_{\mu \nu}
$$

$\delta \phi=\delta \phi$ vacuum $+\delta \phi_{\text {inv. }}$ decay

- A production from ϕ kinetic energy. Resulting friction can be so strong as to facilitate ϕ slow roll. Anber, Sorbo '09
- We impose negligible backreaction of A on background dynamics

$$
\begin{array}{r}
\delta \ddot{\phi}+3 H \delta \dot{\phi}-\frac{\vec{\nabla}^{2}}{a^{2}} \delta \phi+m^{2} \delta \phi=\frac{\alpha}{f} F^{\mu \nu} \tilde{F}_{\mu \nu} \\
\delta \phi=\delta \phi \text { vacuum }+\delta \phi_{\text {inv.decay }} \\
\not \downarrow^{F T} \\
J_{k}
\end{array}
$$

$$
\widehat{\delta \phi}_{\mathrm{inv} . \operatorname{decay}}(\eta)=\int d \eta^{\prime} G_{k}\left(\eta, \eta^{\prime}\right) \widehat{J_{k}}\left(\eta^{\prime}\right)
$$

$$
G_{k}=i \theta\left(\eta-\eta^{\prime}\right) \delta \phi_{k}(\eta) \delta \phi_{k}^{*}\left(\eta^{\prime}\right)+\text { h. c. }
$$

- A production from ϕ kinetic energy. Resulting friction can be so strong as to facilitate ϕ slow roll. Anber, Sorbo '09
- We impose negligible backreaction of A on background dynamics

$$
\begin{gathered}
\delta \ddot{\phi}+3 H \delta \phi-\frac{\vec{\nabla}^{2}}{a^{2}} \delta \phi+m^{2} \delta \phi=\frac{\alpha}{f} F^{\mu \nu} \tilde{F}_{\mu \nu} \\
\delta \phi=\delta \phi \text { vacuum }+\delta \phi_{\text {inv.decay }} \\
\bigvee^{F T} \\
J_{k}
\end{gathered}
$$

$\widehat{\delta \phi}_{\text {inv.decay }}(\eta)=\int d \eta^{\prime} G_{k}\left(\eta, \eta^{\prime}\right) \widehat{J_{k}}\left(\eta^{\prime}\right)$
$G_{k}=i \theta\left(\eta-\eta^{\prime}\right) \delta \phi_{k}(\eta) \delta \phi_{k}^{*}\left(\eta^{\prime}\right)+$ h. c.
$\left\langle\delta \phi\right.$ vacuum $\left.\delta \phi_{\text {inv.decay }}\right\rangle=0$

- A production from ϕ kinetic energy. Resulting friction can be so strong as to facilitate ϕ slow roll. Anber, Sorbo '09
- We impose negligible backreaction of A on background dynamics

$$
\begin{array}{r}
\delta \ddot{\phi}+3 H \delta \dot{\phi}-\frac{\vec{\nabla}^{2}}{a^{2}} \delta \phi+m^{2} \delta \phi=\frac{\alpha}{f} F^{\mu \nu} \tilde{F}_{\mu \nu} \\
\delta \phi=\delta \phi_{\text {vacuum }}+\delta \phi_{\text {inv.decay }} \\
\not \mathrm{FT}^{2} \\
J_{k}
\end{array}
$$

$\widehat{\delta \phi}_{\text {inv.decay }}(\eta)=\int d \eta^{\prime} G_{k}\left(\eta, \eta^{\prime}\right) \widehat{J_{k}}\left(\eta^{\prime}\right)$

$$
G_{k}=i \theta\left(\eta-\eta^{\prime}\right) \delta \phi_{k}(\eta) \delta \phi_{k}^{*}\left(\eta^{\prime}\right)+\text { h. c. }
$$

$\left\langle\delta \phi\right.$ vacuum $\left.\delta \phi_{\text {inv.decay }}\right\rangle=0$

Same scale dependence

$$
\begin{aligned}
& P_{\zeta}(k)=\mathcal{P}_{v}\left(\frac{k}{k_{0}}\right)^{n_{s}-1}\left[1+7.5 \cdot 10^{-5} \mathcal{P}_{v} \frac{e^{4 \pi \xi}}{\xi^{6}}\right] \\
& \mathcal{P}_{v}^{1 / 2} \equiv \frac{H}{2 \pi|\dot{\phi}|} \\
& \xi \equiv \frac{\alpha}{f} \frac{|\dot{\phi}|}{2 H}
\end{aligned}
$$

$$
P_{\zeta}(k)=\mathcal{P}_{v}\left(\frac{k}{k_{0}}\right)^{n_{s}-1}\left[1+7.5 \cdot 10^{-5} \mathcal{P}_{v} \frac{e^{4 \pi \xi}}{\xi^{6}}\right]
$$

$$
\mathcal{P}_{v}^{1 / 2} \equiv \frac{H}{2 \pi|\dot{\phi}|}
$$

$$
\xi \equiv \frac{\alpha}{f} \frac{|\dot{\phi}|}{2 H}
$$

$\delta \phi$ vac dominates standard result

$$
P_{\zeta}(k)=\mathcal{P}_{v}\left(\frac{k}{k_{0}}\right)^{n_{s}-1}\left[1+7.5 \cdot 10^{-5} \mathcal{P}_{v} \frac{e^{4 \pi \xi}}{\xi^{6}}\right]
$$

$$
\begin{aligned}
& \mathcal{P}_{v}^{1 / 2} \equiv \frac{H}{2 \pi|\dot{\phi}|} \\
& \xi \equiv \frac{\alpha}{f} \frac{|\dot{\phi}|}{2 H}
\end{aligned}
$$

$\delta \phi$ vac dominates standard result

$\delta \phi_{\text {inv.decay }}$ dominates need to decrease \mathcal{P}_{v} exponentially

Bispectrum $\left\langle\zeta_{\mathrm{k}_{1}} \zeta_{\mathrm{k}_{2}} \zeta_{\mathrm{k}_{3}}\right\rangle=B\left(k_{i}\right) \delta^{(3)}\left(\mathrm{k}_{1}+\mathrm{k}_{\mathbf{2}}+\mathrm{k}_{3}\right)$
Scale invariance $\Rightarrow B\left(k_{i}\right)=k_{1}^{-6} B\left(1, \frac{k_{2}}{k_{1}}, \frac{k_{3}}{k_{1}}\right) \quad, \quad x_{i} \equiv \frac{k_{i}}{k_{1}}$
Shape $S\left(x_{1}, x_{2}\right) \propto B\left(1, x_{2}, x_{3}\right) x_{2}^{2} x_{3}^{2} \quad$ Babich, Creminelli, Zaldarriaga '04

Bispectrum $\left\langle\zeta_{\mathbf{k}_{1}} \zeta_{\mathbf{k}_{2}} \zeta_{\mathrm{k}_{3}}\right\rangle=B\left(k_{i}\right) \delta^{(3)}\left(\mathbf{k}_{1}+\mathbf{k}_{\mathbf{2}}+\mathbf{k}_{3}\right)$
Scale invariance $\Rightarrow B\left(k_{i}\right)=k_{1}^{-6} B\left(1, \frac{k_{2}}{k_{1}}, \frac{k_{3}}{k_{1}}\right) \quad, \quad x_{i} \equiv \frac{k_{i}}{k_{1}}$
Shape $S\left(x_{1}, x_{2}\right) \propto B\left(1, x_{2}, x_{3}\right) x_{2}^{2} x_{3}^{2} \quad$ Babich, Creminelli, Zaldarriaga '04

Axion Inflation

Equilateral template

Bispectrum $\left\langle\zeta_{\mathbf{k}_{1}} \zeta_{\mathbf{k}_{2}} \zeta_{\mathbf{k}_{3}}\right\rangle=B\left(k_{i}\right) \delta^{(3)}\left(\mathbf{k}_{1}+\mathbf{k}_{\mathbf{2}}+\mathbf{k}_{3}\right)$
Scale invariance $\Rightarrow B\left(k_{i}\right)=k_{1}^{-6} B\left(1, \frac{k_{2}}{k_{1}}, \frac{k_{3}}{k_{1}}\right) \quad, \quad x_{i} \equiv \frac{k_{i}}{k_{1}}$
Shape $S\left(x_{1}, x_{2}\right) \propto B\left(1, x_{2}, x_{3}\right) x_{2}^{2} x_{3}^{2} \quad$ Babich, Creminelli, Zaldarriaga '04

Axion Inflation

Equilateral template

$\cos ($ axion inf., equil. $)=0.93 ; \cos ($ axion inf., orth. $)=-0.15$

$P_{\mathrm{GW}} \simeq \frac{2 H^{2}}{\pi^{2} M_{p}^{2}}\left(\frac{k}{k_{0}}\right)^{n_{T}}\left[1+4.3 \cdot 10^{-7} \frac{H^{2}}{M_{p}^{2}} \frac{e^{4 \pi \xi}}{\xi^{6}}\right]$

Single helicity $\rightarrow\langle B E\rangle,\langle B T\rangle \quad$ Sorbo '11; Kamionkowski, Souradeep '10 However, strongly subdominant in region allowed by f_{NL}

So far, H and $\dot{\phi}$ unrelated; now specify to $V \propto \phi^{p}$

Detection of both r and $f_{N L}$ for $f \sim 10^{-2} \alpha M_{p}$
Natural value in controlled realizations of axion inflation

