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• Virtue of inflation: simplest models (single, standard kinetic term,

slowly rolling field) work ! Standard lore: unobservable non-gaussianity.

• In general, non-gaussianity is a measure of

the inflaton interactions. Inflaton cannot be

totally uncoupled: (i) gravity; (ii) needed for

reheating; however, too large coupling can

spoil the required flatness of the inflaton po-

tential

One of the greatest virtue of inflation is that

the simplest model one can write down (at

east from bottom-up point of view), namely

single field, with standard kinetic term, slowly

rolling, works. This set up may generate

observable tensor modes, but unobservable

nongaussianity.

Nongaussianity is a measure of inflaton in-

teractions, and too strong interactions can
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• Non-gaussianity ↔ inflaton interactions. φ not free: (i) gravity;

(ii) reheating; too large coupling can spoil the flatness of V (φ)

Nongaussianity is a measure of inflaton in-

teractions, and too strong interactions can

in general spoil flatness of the potential. For

instance, in

V =
λ

4
φ4 , λ " 10−13 (1)

or, for example, even dim-6 Planck-suppressed

operators are dangerous

V = e

φ2

M2
p

(

DW2
−

3W2

M2
p

)

(2)

General problem: large couplings go in the di-

rection of generating nongaussianity, but also

of ruining flatness of the potential
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By itself, flatness stringent requirement:

For example V =
λ

4
φ4 , λ " 10−13 . Or, for example, even higher dim.

Planck− suppressed operators can spoil inflaton V = e
φ2
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• Here, single field slow roll inflation, for which coupling to “matter”

provides large non-gaussianity, while V (φ) controllably flat.
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Axions are Ubiquitous in Particle Theory!

Pseudo-Nambu-Goldstone-Boson

Spontaneous breaking global U(1):
Φ = ve iφ/f .

U(1) x-form Φ → e iαΦ leads to shift
symmetry for angular variable:
φ → φ+ αf .

String Theory

Anti-symmetric 2-form: CMN

Contain axions on dim red: ci = 2π
∫

Σi
C .

Generic CY may contain ∼ 105 axions!
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Peccei, Quinn ’77: Chiral U(1) symmetry
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Peccei, Quinn ’77: Chiral U(1) symmetry

spontaneously broken Φ = (f + ρ) eiφ/f

Symmetry is anomalous ⇒ θ → θ +
φ

f
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FIG. 3: The potential height scale Λ corresponding to
P 1/2

R = 10−5 is shown as a function of the potential width
f for various numbers of e-foldingss N before the end of in-
flation. The (light blue) band corresponds to the values of
N consistent with the standard post-inflation cosmology for
ρRH > (1 GeV)4.

The spectral index for natural inflation is shown in Fig-
ure 4. For small f , ns is essentially independent of
N , while for f >

∼ 2mPl, ns has essentially no f depen-
dence. Analytical estimates can be obtained in these two
regimes:

ns ≈

{

1 − m2

Pl

8πf2 , for f <
∼

3
4
mPl

1 − 2
N , for f >

∼ 2mPl .
(12)

Previous analyses of COBE data, based in part on de-
terminations of this spectral index, have led to con-
straints on the width of the natural inflation potential
of f >

∼ 0.3mPl [17] and f >
∼ 0.4mPl [18], while analysis of

WMAP’s first year data requires f >
∼ 0.6mPl [15]. Values

of f below these constraints would lead to ns < 0.9, re-
ducing fluctuations at small scales and suppressing higher
order acoustic peaks (relative to lower order peaks) to
a level inconsistent with the CMB data. The WMAP
3-year data yield ns = 0.951+0.015

−0.019 (ns = 0.987+0.019
−0.037

when tensor modes are included in the fits) on the
k = 0.002Mpc−1 scale2. This WMAP3 result leads to
the somewhat tighter constraint f >

∼ 0.7mPl at 95% C.L.

2 As discussed in Section IV, the running of the spectral index ns

in natural inflation is so small that the value of ns at the scale
of the WMAP3 measurements is virtually identical to its value
on the horizon scale.
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FIG. 4: The spectral index ns is shown as a function of the
potential width f for various numbers of e-foldingss N before
the end of inflation. The (light blue) band corresponds to
the values of N consistent with the standard post-inflation
cosmology for ρRH > (1 GeV)4.

B. Tensor (Gravitational Wave) Fluctuations

In addition to scalar (density) perturbations, inflation
also produces tensor (gravitational wave) perturbations
with amplitude

P 1/2
T (k) =

4H√
πmPl

. (13)

Here, we examine the tensor mode predictions of natural
inflation and compare with WMAP data.

Conventionally, the tensor amplitude is given in terms
of the tensor/scalar ratio

r ≡
PT

PR
= 16ε , (14)

which is shown in Figure 5 for natural inflation. For
small f , r rapidly becomes negligible, while f → 8

N for
f & mPl. In all cases, r <

∼ 0.2, well below the WMAP
limit of r < 0.55 (95% C.L., no running).

As mentioned in the introduction, in principle, there
are four parameters describing scalar and tensor fluctu-
ations: the amplitude and spectra of both components,
with the latter characterized by the spectral indices ns

and nT (we are ignoring any running here). The am-
plitude of the scalar perturbations is normalized by the
height of the potential (the energy density Λ4). The ten-
sor spectral index nT is not an independent parameter
since it is related to the tensor/scalar ratio r by the infla-
tionary consistency condition r = −8nT. The remaining
free parameters are the spectral index ns of the scalar
density fluctuations, and the tensor amplitude (given by
r).
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Figure 1: Contour plot of the potential, for Λ1 = 1.5 Λ2 , f = g2 = 0.7 Mp ,
g1 = 0.98 Mp (giving fξ ! 3 Mp ). See the main text for details.

3 Conclusions

We considered natural inflation with two axions (with two decay constants
f1 and f2) and two confining gauge groups. This allows us to circumvent a
serious problem of natural inflation coming from equation (3) and the poten-
tial importance of quantum gravitational effects. We conclude our discussion
by explaining that the present mechanism is not destroyed by such quantum
gravitational effects as long as fi < MP for all i.

The anomalous couplings to two nonabelian groups can be different, with
effective decay constants f1ε1, f1ε2, f2ε3, and f2ε4, where

Laxion coupling =
a1

f1

(

(1/ε1)

32π2
F1F̃1 +

(1/ε2)

32π2
F2F̃2

)

+

+
a2

f2

(

(1/ε3)

32π2
F1F̃1 +

(1/ε4)

32π2
F2F̃2

)

(12)

and FF̃ = 1
2εµνρσFµνFρσ . Note, however, that (1/εi) are just the expressions

for the axion couplings to the anomaly (which are e.g. determined by the axial
charges of fermions), while the decay constants corresponding to the Goldstone
bosons are simply f1 and f2. Thus, the axionic couplings to matter are de-

termined by f1 and f2, namely ∼ (1/fi)(∂µai)J
(matter)i
µ . For the gravitational

effects, the decay constants are appearing in the form fi/MP , and hence for
fi # MP quantum gravitational effects are negligible in our scenario. The ef-

7

(in the last expression we have assumed ε ! η , which is appropriate as long
as φ is close to the maximum). Hence, the spectrum “reddens” as f decreases.
The WMAP limit on the spectral index |ns − 1| <

∼ 0.1 (as computed in [10])
translates into the bound [11] 6

f >
∼ 3 Mp . (3)

It is legitimate to wonder whether such a high value is compatible with an
effective field theory description [7, 12]. In particular, it can be expected that
for high f quantum gravity effects will break the global axionic symmetry [13].
In that sense, equation (3) is the main stumbling block for natural inflation.
String theory realizations have further problems to accomodate a large f , as
emphasized in [7]. For instance, in the simplest version where the inflaton is
associated to the model independent axion of heterotic string compactifications,
the scale f is related to the value of the dilaton field, and the required value of
f is in the strong coupling regime, where the supergravity description breaks
down.

Some versions of inflation, as for instance the hybrid [2] or the assisted [14]
ones, make a nontrivial use of two or more scalar fields. As we show in this paper,
the presence of two or more axions can also have interesting consequences, and
it can result in a solution to the problems mentioned above. More precisely, it is
possible to obtain some directions characerized by an effective axion scale which
is much larger than the ones of the original fields. To illustrate the general idea,
it is sufficient to consider two axionic fields θ , ρ (the extension to more fields is
trivial), with a potential

V = Λ4
1

[

1 − cos

(

θ

f1
+

ρ

g1

)]

+ Λ4
2

[

1 − cos

(

θ

f2
+

ρ

g2

)]

(4)

It is easy to see that, when the condition

f1/g1 = f2/g2 (5)

is met, the same linear combination of the two axions (denoted by ψ) appears
in both terms of (4). Hence, the orthogonal combination ξ is a flat direction
of V . In general, the lifting of the potential along ξ is suppressed as long as
the condition (5) holds at an approximate level. In this case the field ξ can be
a good inflaton candidate, even when the scales f1,2 , g1,2 are all smaller than
Mp . This is the main result of our paper. It allows us to circumvent the bound
in equation (3) and thus removes a severe problem of natural inflation.

The equality (5) can be accidental, or due to a symmetry between the mech-
anisms responsible for the breaking of the two shift symmetries θ → θ+C , ρ →
ρ+C′ . In the second case, the flat direction ξ will be lifted due to the breaking
of this symmetry, so that a small breaking will ensure that the ξ direction is
sufficiently flat.

6The amplitude of the fluctuations (δρ/ρ ∼ 10−5) does not set a further direct limit on f ,
since it also depends on the scale of the potential Λ . If the bound (3) is saturated, the correct
amplitude is obtained for Λ " 1015 GeV [11].
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effects, the decay constants are appearing in the form fi/MP , and hence for
fi # MP quantum gravitational effects are negligible in our scenario. The ef-

7

(in the last expression we have assumed ε ! η , which is appropriate as long
as φ is close to the maximum). Hence, the spectrum “reddens” as f decreases.
The WMAP limit on the spectral index |ns − 1| <

∼ 0.1 (as computed in [10])
translates into the bound [11] 6

f >
∼ 3 Mp . (3)

It is legitimate to wonder whether such a high value is compatible with an
effective field theory description [7, 12]. In particular, it can be expected that
for high f quantum gravity effects will break the global axionic symmetry [13].
In that sense, equation (3) is the main stumbling block for natural inflation.
String theory realizations have further problems to accomodate a large f , as
emphasized in [7]. For instance, in the simplest version where the inflaton is
associated to the model independent axion of heterotic string compactifications,
the scale f is related to the value of the dilaton field, and the required value of
f is in the strong coupling regime, where the supergravity description breaks
down.

Some versions of inflation, as for instance the hybrid [2] or the assisted [14]
ones, make a nontrivial use of two or more scalar fields. As we show in this paper,
the presence of two or more axions can also have interesting consequences, and
it can result in a solution to the problems mentioned above. More precisely, it is
possible to obtain some directions characerized by an effective axion scale which
is much larger than the ones of the original fields. To illustrate the general idea,
it is sufficient to consider two axionic fields θ , ρ (the extension to more fields is
trivial), with a potential

V = Λ4
1

[

1 − cos

(

θ

f1
+

ρ

g1

)]

+ Λ4
2

[

1 − cos

(

θ

f2
+

ρ

g2

)]

(4)

It is easy to see that, when the condition

f1/g1 = f2/g2 (5)

is met, the same linear combination of the two axions (denoted by ψ) appears
in both terms of (4). Hence, the orthogonal combination ξ is a flat direction
of V . In general, the lifting of the potential along ξ is suppressed as long as
the condition (5) holds at an approximate level. In this case the field ξ can be
a good inflaton candidate, even when the scales f1,2 , g1,2 are all smaller than
Mp . This is the main result of our paper. It allows us to circumvent the bound
in equation (3) and thus removes a severe problem of natural inflation.

The equality (5) can be accidental, or due to a symmetry between the mech-
anisms responsible for the breaking of the two shift symmetries θ → θ+C , ρ →
ρ+C′ . In the second case, the flat direction ξ will be lifted due to the breaking
of this symmetry, so that a small breaking will ensure that the ξ direction is
sufficiently flat.

6The amplitude of the fluctuations (δρ/ρ ∼ 10−5) does not set a further direct limit on f ,
since it also depends on the scale of the potential Λ . If the bound (3) is saturated, the correct
amplitude is obtained for Λ " 1015 GeV [11].
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Figure 1: Contour plot of the potential, for Λ1 = 1.5 Λ2 , f = g2 = 0.7 Mp ,
g1 = 0.98 Mp (giving fξ ! 3 Mp ). See the main text for details.

3 Conclusions

We considered natural inflation with two axions (with two decay constants
f1 and f2) and two confining gauge groups. This allows us to circumvent a
serious problem of natural inflation coming from equation (3) and the poten-
tial importance of quantum gravitational effects. We conclude our discussion
by explaining that the present mechanism is not destroyed by such quantum
gravitational effects as long as fi < MP for all i.

The anomalous couplings to two nonabelian groups can be different, with
effective decay constants f1ε1, f1ε2, f2ε3, and f2ε4, where

Laxion coupling =
a1

f1

(

(1/ε1)

32π2
F1F̃1 +

(1/ε2)

32π2
F2F̃2

)

+

+
a2

f2

(

(1/ε3)

32π2
F1F̃1 +

(1/ε4)

32π2
F2F̃2

)

(12)

and FF̃ = 1
2εµνρσFµνFρσ . Note, however, that (1/εi) are just the expressions

for the axion couplings to the anomaly (which are e.g. determined by the axial
charges of fermions), while the decay constants corresponding to the Goldstone
bosons are simply f1 and f2. Thus, the axionic couplings to matter are de-

termined by f1 and f2, namely ∼ (1/fi)(∂µai)J
(matter)i
µ . For the gravitational

effects, the decay constants are appearing in the form fi/MP , and hence for
fi # MP quantum gravitational effects are negligible in our scenario. The ef-

7

(in the last expression we have assumed ε ! η , which is appropriate as long
as φ is close to the maximum). Hence, the spectrum “reddens” as f decreases.
The WMAP limit on the spectral index |ns − 1| <

∼ 0.1 (as computed in [10])
translates into the bound [11] 6

f >
∼ 3 Mp . (3)

It is legitimate to wonder whether such a high value is compatible with an
effective field theory description [7, 12]. In particular, it can be expected that
for high f quantum gravity effects will break the global axionic symmetry [13].
In that sense, equation (3) is the main stumbling block for natural inflation.
String theory realizations have further problems to accomodate a large f , as
emphasized in [7]. For instance, in the simplest version where the inflaton is
associated to the model independent axion of heterotic string compactifications,
the scale f is related to the value of the dilaton field, and the required value of
f is in the strong coupling regime, where the supergravity description breaks
down.

Some versions of inflation, as for instance the hybrid [2] or the assisted [14]
ones, make a nontrivial use of two or more scalar fields. As we show in this paper,
the presence of two or more axions can also have interesting consequences, and
it can result in a solution to the problems mentioned above. More precisely, it is
possible to obtain some directions characerized by an effective axion scale which
is much larger than the ones of the original fields. To illustrate the general idea,
it is sufficient to consider two axionic fields θ , ρ (the extension to more fields is
trivial), with a potential

V = Λ4
1

[

1 − cos

(

θ

f1
+

ρ

g1

)]

+ Λ4
2

[

1 − cos

(

θ

f2
+

ρ

g2

)]

(4)

It is easy to see that, when the condition

f1/g1 = f2/g2 (5)

is met, the same linear combination of the two axions (denoted by ψ) appears
in both terms of (4). Hence, the orthogonal combination ξ is a flat direction
of V . In general, the lifting of the potential along ξ is suppressed as long as
the condition (5) holds at an approximate level. In this case the field ξ can be
a good inflaton candidate, even when the scales f1,2 , g1,2 are all smaller than
Mp . This is the main result of our paper. It allows us to circumvent the bound
in equation (3) and thus removes a severe problem of natural inflation.

The equality (5) can be accidental, or due to a symmetry between the mech-
anisms responsible for the breaking of the two shift symmetries θ → θ+C , ρ →
ρ+C′ . In the second case, the flat direction ξ will be lifted due to the breaking
of this symmetry, so that a small breaking will ensure that the ξ direction is
sufficiently flat.

6The amplitude of the fluctuations (δρ/ρ ∼ 10−5) does not set a further direct limit on f ,
since it also depends on the scale of the potential Λ . If the bound (3) is saturated, the correct
amplitude is obtained for Λ " 1015 GeV [11].
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Figure 1: Contour plot of the potential, for Λ1 = 1.5 Λ2 , f = g2 = 0.7 Mp ,
g1 = 0.98 Mp (giving fξ ! 3 Mp ). See the main text for details.

3 Conclusions

We considered natural inflation with two axions (with two decay constants
f1 and f2) and two confining gauge groups. This allows us to circumvent a
serious problem of natural inflation coming from equation (3) and the poten-
tial importance of quantum gravitational effects. We conclude our discussion
by explaining that the present mechanism is not destroyed by such quantum
gravitational effects as long as fi < MP for all i.

The anomalous couplings to two nonabelian groups can be different, with
effective decay constants f1ε1, f1ε2, f2ε3, and f2ε4, where

Laxion coupling =
a1

f1

(

(1/ε1)

32π2
F1F̃1 +

(1/ε2)

32π2
F2F̃2

)

+

+
a2

f2

(

(1/ε3)

32π2
F1F̃1 +

(1/ε4)

32π2
F2F̃2

)

(12)

and FF̃ = 1
2εµνρσFµνFρσ . Note, however, that (1/εi) are just the expressions

for the axion couplings to the anomaly (which are e.g. determined by the axial
charges of fermions), while the decay constants corresponding to the Goldstone
bosons are simply f1 and f2. Thus, the axionic couplings to matter are de-

termined by f1 and f2, namely ∼ (1/fi)(∂µai)J
(matter)i
µ . For the gravitational

effects, the decay constants are appearing in the form fi/MP , and hence for
fi # MP quantum gravitational effects are negligible in our scenario. The ef-

7

(in the last expression we have assumed ε ! η , which is appropriate as long
as φ is close to the maximum). Hence, the spectrum “reddens” as f decreases.
The WMAP limit on the spectral index |ns − 1| <

∼ 0.1 (as computed in [10])
translates into the bound [11] 6

f >
∼ 3 Mp . (3)

It is legitimate to wonder whether such a high value is compatible with an
effective field theory description [7, 12]. In particular, it can be expected that
for high f quantum gravity effects will break the global axionic symmetry [13].
In that sense, equation (3) is the main stumbling block for natural inflation.
String theory realizations have further problems to accomodate a large f , as
emphasized in [7]. For instance, in the simplest version where the inflaton is
associated to the model independent axion of heterotic string compactifications,
the scale f is related to the value of the dilaton field, and the required value of
f is in the strong coupling regime, where the supergravity description breaks
down.

Some versions of inflation, as for instance the hybrid [2] or the assisted [14]
ones, make a nontrivial use of two or more scalar fields. As we show in this paper,
the presence of two or more axions can also have interesting consequences, and
it can result in a solution to the problems mentioned above. More precisely, it is
possible to obtain some directions characerized by an effective axion scale which
is much larger than the ones of the original fields. To illustrate the general idea,
it is sufficient to consider two axionic fields θ , ρ (the extension to more fields is
trivial), with a potential

V = Λ4
1

[

1 − cos

(

θ

f1
+

ρ

g1

)]

+ Λ4
2

[

1 − cos

(

θ

f2
+

ρ

g2

)]

(4)

It is easy to see that, when the condition

f1/g1 = f2/g2 (5)

is met, the same linear combination of the two axions (denoted by ψ) appears
in both terms of (4). Hence, the orthogonal combination ξ is a flat direction
of V . In general, the lifting of the potential along ξ is suppressed as long as
the condition (5) holds at an approximate level. In this case the field ξ can be
a good inflaton candidate, even when the scales f1,2 , g1,2 are all smaller than
Mp . This is the main result of our paper. It allows us to circumvent the bound
in equation (3) and thus removes a severe problem of natural inflation.

The equality (5) can be accidental, or due to a symmetry between the mech-
anisms responsible for the breaking of the two shift symmetries θ → θ+C , ρ →
ρ+C′ . In the second case, the flat direction ξ will be lifted due to the breaking
of this symmetry, so that a small breaking will ensure that the ξ direction is
sufficiently flat.

6The amplitude of the fluctuations (δρ/ρ ∼ 10−5) does not set a further direct limit on f ,
since it also depends on the scale of the potential Λ . If the bound (3) is saturated, the correct
amplitude is obtained for Λ " 1015 GeV [11].
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Figure 1: Contour plot of the potential, for Λ1 = 1.5 Λ2 , f = g2 = 0.7 Mp ,
g1 = 0.98 Mp (giving fξ ! 3 Mp ). See the main text for details.

3 Conclusions

We considered natural inflation with two axions (with two decay constants
f1 and f2) and two confining gauge groups. This allows us to circumvent a
serious problem of natural inflation coming from equation (3) and the poten-
tial importance of quantum gravitational effects. We conclude our discussion
by explaining that the present mechanism is not destroyed by such quantum
gravitational effects as long as fi < MP for all i.

The anomalous couplings to two nonabelian groups can be different, with
effective decay constants f1ε1, f1ε2, f2ε3, and f2ε4, where

Laxion coupling =
a1

f1

(

(1/ε1)

32π2
F1F̃1 +

(1/ε2)

32π2
F2F̃2

)

+

+
a2

f2

(

(1/ε3)

32π2
F1F̃1 +

(1/ε4)

32π2
F2F̃2

)

(12)

and FF̃ = 1
2εµνρσFµνFρσ . Note, however, that (1/εi) are just the expressions

for the axion couplings to the anomaly (which are e.g. determined by the axial
charges of fermions), while the decay constants corresponding to the Goldstone
bosons are simply f1 and f2. Thus, the axionic couplings to matter are de-

termined by f1 and f2, namely ∼ (1/fi)(∂µai)J
(matter)i
µ . For the gravitational

effects, the decay constants are appearing in the form fi/MP , and hence for
fi # MP quantum gravitational effects are negligible in our scenario. The ef-

7

(in the last expression we have assumed ε ! η , which is appropriate as long
as φ is close to the maximum). Hence, the spectrum “reddens” as f decreases.
The WMAP limit on the spectral index |ns − 1| <

∼ 0.1 (as computed in [10])
translates into the bound [11] 6

f >
∼ 3 Mp . (3)

It is legitimate to wonder whether such a high value is compatible with an
effective field theory description [7, 12]. In particular, it can be expected that
for high f quantum gravity effects will break the global axionic symmetry [13].
In that sense, equation (3) is the main stumbling block for natural inflation.
String theory realizations have further problems to accomodate a large f , as
emphasized in [7]. For instance, in the simplest version where the inflaton is
associated to the model independent axion of heterotic string compactifications,
the scale f is related to the value of the dilaton field, and the required value of
f is in the strong coupling regime, where the supergravity description breaks
down.

Some versions of inflation, as for instance the hybrid [2] or the assisted [14]
ones, make a nontrivial use of two or more scalar fields. As we show in this paper,
the presence of two or more axions can also have interesting consequences, and
it can result in a solution to the problems mentioned above. More precisely, it is
possible to obtain some directions characerized by an effective axion scale which
is much larger than the ones of the original fields. To illustrate the general idea,
it is sufficient to consider two axionic fields θ , ρ (the extension to more fields is
trivial), with a potential

V = Λ4
1

[

1 − cos

(

θ

f1
+

ρ

g1

)]

+ Λ4
2

[

1 − cos

(

θ

f2
+

ρ

g2

)]

(4)

It is easy to see that, when the condition

f1/g1 = f2/g2 (5)

is met, the same linear combination of the two axions (denoted by ψ) appears
in both terms of (4). Hence, the orthogonal combination ξ is a flat direction
of V . In general, the lifting of the potential along ξ is suppressed as long as
the condition (5) holds at an approximate level. In this case the field ξ can be
a good inflaton candidate, even when the scales f1,2 , g1,2 are all smaller than
Mp . This is the main result of our paper. It allows us to circumvent the bound
in equation (3) and thus removes a severe problem of natural inflation.

The equality (5) can be accidental, or due to a symmetry between the mech-
anisms responsible for the breaking of the two shift symmetries θ → θ+C , ρ →
ρ+C′ . In the second case, the flat direction ξ will be lifted due to the breaking
of this symmetry, so that a small breaking will ensure that the ξ direction is
sufficiently flat.

6The amplitude of the fluctuations (δρ/ρ ∼ 10−5) does not set a further direct limit on f ,
since it also depends on the scale of the potential Λ . If the bound (3) is saturated, the correct
amplitude is obtained for Λ " 1015 GeV [11].
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Impact of ϕ(0) on the gauge field

ϕ̈(0) + 3Hϕ̇(0) + V � (ϕ) = 0: slow roll
∂2

∂τ2 A± = −
�
k

2∓k
aα

f
ϕ̇(0)

�

� �� �
ω2

A±

Tachyonic growth of A+

Instabilities: ω2 can be < 0 for one
polarization!
WKB: A± ∼ 1√

2ω
e±i

�
dτω

=⇒ Tachyonic growth for ω2 < 0 !
A+ ∝ eπξ, ξ = αϕ̇(0)
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scaling in (4.12) and define a “shape function” of the form

S(ki) = N(k1k2k3)
2Bζ(ki) (4.13)

where the constant of proportionality, N , is arbitrary. This shape function coincides with

the quantity that was plotted in many previous works, including [47] for example. For the

case of interest, we have

S (ξ;x2, x3) ≡
1 + x3

2 + x3
3

x2 x3

f3 (ξ; x2, x3)

3 f3 (ξ; 1, 1)
(4.14)

which is normalized so that S(1, 1) = 1. Note that the bispectrum is defined only in the

region x2 + x3 ≥ 1, which follows from the triangle inequality. Moreover, the bispectrum

is symmetric under interchange of any two momenta, and therefore we can restrict to the

region x3 ≤ x2 ≤ 1 to avoid considering the same configuration more than once.

We plot the shape function S(x2, x3) from axion inflation in the left panel of Fig. 6.

The bispectrum in this model depends on the parameter ξ. In practice, however, we find

that only the size of the nongaussianity (quantified by f equil
NL ) depends strongly on ξ. The

shape function S(x2, x3), on the other hand, is very mildly dependent on ξ. In Fig. 6

we work in the ξ → ∞ limit, in which case the shape becomes independent of model

parameters. (This can be seen by using the large argument expansion (3.18) of I in the

expression (3.29) for f3.) For ξ ∼ O(1) this figure would be nearly indistinguishable.
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Figure 6: In the left panel we plot the shape function S (x2, x3) in axion inflation, showing that
this peaks on equilateral triangles. We work in the limit ξ → ∞, however, this Figure would be
nearly indistinguishable had we chosen ξ = O(1). In the right panel, for comparison, we plot the
analogous shape function obtained from the standard equilateral template.

From Fig. 6 we see that the bispectrum from axion inflation peaks on equilateral

triangles (corresponding to x2 = x3 = 1) and is thus qualitatively similar to the so-called

equilateral template which is often employed to analyze CMB data [48, 39]
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scaling in (4.12) and define a “shape function” of the form

S(ki) = N(k1k2k3)
2Bζ(ki) (4.13)

where the constant of proportionality, N , is arbitrary. This shape function coincides with

the quantity that was plotted in many previous works, including [47] for example. For the

case of interest, we have

S (ξ;x2, x3) ≡
1 + x3

2 + x3
3

x2 x3

f3 (ξ; x2, x3)

3 f3 (ξ; 1, 1)
(4.14)

which is normalized so that S(1, 1) = 1. Note that the bispectrum is defined only in the

region x2 + x3 ≥ 1, which follows from the triangle inequality. Moreover, the bispectrum

is symmetric under interchange of any two momenta, and therefore we can restrict to the

region x3 ≤ x2 ≤ 1 to avoid considering the same configuration more than once.

We plot the shape function S(x2, x3) from axion inflation in the left panel of Fig. 6.

The bispectrum in this model depends on the parameter ξ. In practice, however, we find

that only the size of the nongaussianity (quantified by f equil
NL ) depends strongly on ξ. The

shape function S(x2, x3), on the other hand, is very mildly dependent on ξ. In Fig. 6

we work in the ξ → ∞ limit, in which case the shape becomes independent of model

parameters. (This can be seen by using the large argument expansion (3.18) of I in the

expression (3.29) for f3.) For ξ ∼ O(1) this figure would be nearly indistinguishable.
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Figure 6: In the left panel we plot the shape function S (x2, x3) in axion inflation, showing that
this peaks on equilateral triangles. We work in the limit ξ → ∞, however, this Figure would be
nearly indistinguishable had we chosen ξ = O(1). In the right panel, for comparison, we plot the
analogous shape function obtained from the standard equilateral template.

From Fig. 6 we see that the bispectrum from axion inflation peaks on equilateral

triangles (corresponding to x2 = x3 = 1) and is thus qualitatively similar to the so-called

equilateral template which is often employed to analyze CMB data [48, 39]

Bequil(ki) ∝ − 1

k3
1k

3
2

− 1

k3
1k

3
3

− 1

k3
2k

3
3

− 2

k2
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2
2k

2
3

+
1

k1k2
2k

3
3

+ (5 perms) (4.15)
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where λp has mass dimension 4 − p. Using slow roll approximation, we find

H =

√

λp

3 p

(2 p N)p/4

M1−p/2
p

, φ̇ =

√

p

2N
H Mp , ξ =

α Mp

2f

√

p

2N
(4.21)

where N is the number of e-folds between the moment the CMB scales left the horizon and

the end of inflation.
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Figure 7: Predicted values for the equilateral fNL parameter, and for the tensor to scalar ratio r
in axion inflation models, as a function of the coupling of the axion to gauge fields, when the axion
dynamics is effectively described by a potential V ∝ ϕp, with p = 1, 2.

The value of λp is fixed by COBE normalization and we assume N = 60 e-foldings

of inflation. Then, for any given value of p, all observational predictions can be written

in terms of f/α only. In axion monodromy [12], p = 1; in most of the other models one

expands the potential close to the minimum, where it is quadratic, p = 2. We therefore

show in Figure 7 the predicted values of fNL and of r for these two cases. We notice that,

once fNL is required to be below the WMAP7 bound, the standard value for r is recovered.

It is interesting to note that axion inflation models generically predict the same values

of ns and r as would be obtained in vanilla chaotic inflation. However, our scenario predicts

also a large nongaussianity with a (nearly) equilateral shape. Axion inflation provides a

rare example of a theory which predicts both a detectable tensor-to-scalar ratio and a large

equilateral bispectrum. Note that, if such a nongaussian signal is eventually detected, then

it will immediately fix the value of the coupling α/f . On the other hand, if Planck fails

to detect nongaussianity then we will have a surprisingly stringent bound on the strongest

axion-type couplings between the inflaton and any gauge field.

5. Cosmological Perturbation Theory

In section 2 we summarized the results of [18], providing a brief overview of the growth

of gauge quanta and the production of inflaton fluctuations via inverse decay processes,
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Large-Field Model:

V (φ) = µ4−pφp

Obervational Bounds:

−214 < f
equil
NL < 266

r <
∼ 0.2

For f /α <
∼ 10−2Mp can easily

saturate observational bound.

Non-detection will bound strongest coupling to ANY gauge field!

Constrains popular models: N-flation, monodromy, · · ·

Monodromy: effect combines with resonance.a

a
Flauger, Hannested, Haugbolle, Jarnus, Pajer, Leblond, McAllister, Sloth, Westphal, Xu In Prog: NB, Namba, Peloso
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